The Tangent Ratio

The angle of inclination of a line or line segment is the acute angle ($<90^{\circ}$) it makes with the horizontal.

The sides of a right triangle are named in relation to one of its acute angles.

The tangent ratio for $<\mathrm{A}(\tan \mathrm{A})$ is equal to:

$$
\tan \mathbf{A}=\frac{\text { length of side opposite }<A}{\text { length of side adjacent to }<A}
$$

The tangent ratio depends only on the measure of the angle, not on how large or small the triangle is! For example, if $\tan A=1.2$; then, in any similar right triangle with $<A$, the length of the side opposite $<A$ is 1.2 times the length of the side adjacent to $<A$.

Example 1: Determining the Tangent Ratios for Angles

Find the tangent ratio for $<\mathrm{A}$.

6

Example 2: Using the Tangent Ratio to Determine the Measure of an Angle

Determine the measures of $<\mathrm{A}$ and $<\mathrm{B}$ to the nearest tenth of a degree.

5

Example 3: Using the Tangent Ratio to Determine the Angle of Inclination

A wire is fastened to a cell phone tower $8.5-\mathrm{m}$ above the ground. The wire is anchored to the ground 14.0-m from the base of the tower. What angle, to the nearest degree, does the wire make with the ground?

Example 4: Using the Tangent Ratio to Solve a Problem

A 19-m support cable is anchored to the ground 5-m from the base of a telephone pole. It is attached near the top of the pole. What angle, to the nearest degree, does the cable make with the ground?

