The Tangent Ratio - Pat II

Direct measurement - using a measuring instrument to determine a length or an angle
Indirect measurement - using mathematical reasoning to calculate a length or an angle
We have shown how to create tangent ratios, and how to use this ratio to solve for the angles of a triangle. Now we will use the same ratio to show how we can solve for the lengths of a triangle!

Example 1: Determining the Length of the Side Opposite a Given Angle

Find the length of $B C$ to the nearest tenth of a centimetre given $\angle A=28^{\circ}$ and side $A C=23.0-\mathrm{cm}$.

Example 2: Determining the Length of the Side Adjacent to a Given Angle

Find the length of $A C$ to the nearest tenth of a centimetre given $\angle A=35^{\circ}$ and side $B C=5.0-\mathrm{cm}$.

Example 3: Using the Tangent Ratio to Solve a Problem

A wire supports a flagpole. The angle between the wire and the level ground is 73°. The wire is anchored to the ground $10-\mathrm{m}$ from the base of the pole. How high up the pole does the wire reach?

