The Sine and Cosine Ratios

In a right triangle, the ratios that relate each leg to the hypotenuse depend only on the measure of the acute angle and not on the size of the triangle!

If $<\mathrm{A}$ is an acute angle in a right triangle, then:

$$
\begin{gathered}
\sin \mathrm{B}=\frac{\text { length of the side opposite }<B}{\text { length of hypotenuse }} \\
\cos \mathrm{B}=\frac{\text { length of the side adjacent } \text { to }<B}{\text { length of hypotenuse }}
\end{gathered}
$$

Q: What happens to $\sin \mathrm{B}$ as $<\mathrm{B}$ approaches 0° ? Why?
A: sin B will approach 0 because the opposite side (numerator in the trig ratio) approaches 0 .
Q: What happens to $\cos \mathrm{B}$ as $<\mathrm{B}$ approaches 0° ? Why?
A: cos B will approach 1 because the hypotenuse (denominator in the trig ratio) approaches 0 .

Example 1: Determining the Sine and Cosine of an Angle

Given $\triangle A B C$ has sides $A B=24 \mathrm{~cm}, A C=26 \mathrm{~cm}$, and $B C=10 \mathrm{~cm}$, and $\angle B=90^{\circ}$, find $\sin C$ and $\cos C$ to the nearest hundredth.

Example 2: Using Sine or Cosine to Determine the Measure of an Angle

Given $\triangle A B C$ has sides $A C=8.7 \mathrm{~cm}$ and $B C=4.6 \mathrm{~cm}$, and $\angle B=90^{\circ}$, find $\angle A$ and $\angle C$ to the nearest degree.

Example 3: Using Sine or Cosine to Solve a Problem

A storm caused a $15.3-\mathrm{m}$ hydro pole to lean over. The top of the pole is now $12.0-\mathrm{m}$ above the ground. What angle does the pole make with the ground? Give the answer to the nearest degree.

In summary,

$$
\operatorname{Sin} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }}=\mathbf{S} \mathbf{O} \mathbf{H}
$$

$\operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }}=\mathbf{C} \mathbf{A} \mathbf{H}$

$\operatorname{Tan} \theta=\frac{\text { Opposite }}{\text { Adjacent }}=\mathbf{T} \mathbf{O} \mathbf{A}$

