


This is Some Sum

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9          | 10  |
|----|----|----|----|----|----|----|----|------------|-----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19         | 20  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | <b>2</b> 9 | 30  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39         | 40  |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49         | 50  |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59         | 60  |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69         | 70  |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79         | 80  |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89         | 90  |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99         | 100 |

In the late 1700s, Gauss was asked to find the sum of the numbers from 1 to 100. Gauss quickly gave the answer 5 050. He did this by looking at patterns.

Instead of finding the sum of the numbers 1 to 100, can you find the sum of the **digits** of the numbers from 1 to 100?

For example, the sum of the digits of the numbers from 1 to 14 is 1+2+3+4+5+6+7+8+9+(1+0)+(1+1)+(1+2)+(1+3)+(1+4)=60.

