Surface Area of Right Pyramids and Right Cones

A right pyramid is a 3-dimensional object that has triangular faces and a base that is a polygon. The triangular faces meet at a point called the apex. The height of the pyramid is the perpendicular distance from the apex to the centre of the base.

When the base of a right pyramid is a regular polygon, the triangular faces are congruent. The shape of the base determines the name of the pyramid. The slant height of the right pyramid is the height of a triangular face.

The surface area of a right pyramid is the sum of the areas of the triangular faces, called the lateral area, and the base.

Surface Area of a Right Pyramid with a Regular Polygon Base

For a right pyramid with a regular polygon
base and slant height s,
Surface area $=\frac{1}{2} s($ perimeter of base $)+($ base area $)$

Want Proof?

We can determine a formula for the surface area of any right pyramid with a regular polygon base. Consider this right square pyramid. Each triangular face has base ℓ and height s.

The area, A, of each triangular face is:
$A=\frac{1}{2}($ base $)($ height $)$
$A=\frac{1}{2} \ell s$
So, the area of the 4 triangular faces is:
$4\left(\frac{1}{2} \ell_{s}\right)=4\left(\frac{1}{2}\right) \ell_{s} \quad$ Rearrange the numbers and variables.

$$
=\left(\frac{1}{2} s\right)(4 \ell)
$$

The area of the triangular faces of a pyramid is called the lateral area, denoted A_{L}.
$A_{L}=\left(\frac{1}{2} s\right)(4 \ell)$
The term 4ℓ is the perimeter of the base of the pyramid, so
Surface area of the pyramid $=\left(\frac{1}{2}\right.$ slant height $)($ perimeter of base $)+$ base area
Since any right pyramid with a regular polygon base has congruent triangular faces, the same formula is true for any of these pyramids.

Example 1: Finding the Surface Area of a Square Pyramid

A square pyramid has a base with side length 4 ft . Each triangular face has a slant height of 5 ft . Find the surface area of the pyramid.

Example 2: Finding the Surface Area of a Regular Tetrahedron

A regular tetrahedron has a base with side length 7 cm . Each triangular face has a slant height of 6 cm . Find the surface area of the tetrahedron.

Example 3: Finding the Surface Area of a Rectangular Pyramid

A rectangular pyramid has two sets of congruent triangular faces: one has a base of 5-m and a height or $6-\mathrm{m}$; the other has a base $9-\mathrm{m}$ and a height of $5-\mathrm{m}$. Find the surface area of the rectangular pyramid.

Example 4: Finding the Surface Area of a Square Pyramid Given Its Height

Find the surface area of a square pyramid with a base of 10 in . and a height of 6 in.

A right circular cone, or right cone, is a 3-dimensional object that has a circular base and a curved surface. The height of the cone is the perpendicular distance from the apex to the base. The slant height of the cone is the shortest distance on the curved surface between the apex and a point on the circumference of the base.

Surface Area of a Right Cone

Surface area $=$ lateral area + base area

For a right cone with slant height s and base radius r :

$$
S A=\pi r s+\pi r^{2}
$$

Want Proof?

Hint: Start with a right square pyramid and then continue adding more sides to the polygon base. As the number of sides increases, the base approaches the shape of a circle, and the perimeter will become the circumference of a circle. Try it for yourself!

Example 5: Finding the Surface Area of a Cone

A right cone has a base radius of 12 ft . and a height of 14 ft . Calculate the surface area of the cone to the nearest square foot.

Example 6: Determining an Unknown Measurement

The lateral area of a cone is $420 \mathrm{~cm}^{2}$. The diameter of the cone is 15 cm . Determine the height of the cone to the nearest tenth of a centimetre.

